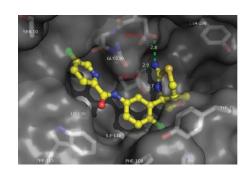
POTW: Asymmetric Nitrone-Olefin Cycloaddition

LY2886721


- Potent and selective inhibitor of β-amyloid cleaving enzyme (BACE)
- BACE1 IC₅₀ = 20.3 nM
- Phase II studies were terminated voluntarily by Lilly due to abnormal liver enzyme elevations in 4 patients out of 70. [1]

Problems associated with the Gen 1 synthesis:

- Long synthesis and poor overall yield (~1%)
- Moderate yield on step 4 after optimization
- Stoichiometric Zn reduction in step 7 + waste disposal problem
- Resolution at step 8
- Expensive ring closure at step 10
- Low and inconsistent yields at step 11

References:

- 1 J. Neurosci. **2015**, 35, 1199
- Org. Process Res. Dev. 2015, 19, 1203
- 3 Org. Process Res. Dev. 2015, 19, 1214
- 4 Org. Process Res. Dev. 2015, 19, 1231
- 5 Org. Process Res. Dev. 2015, 19, 1244

First generation route [2]

POTW: Asymmetric Nitrone-Olefin Cycloaddition

Optimization goal:

- Avoids throwing out 50% of material at the resolution step
- Avoids using stoichiometric amounts of Zn

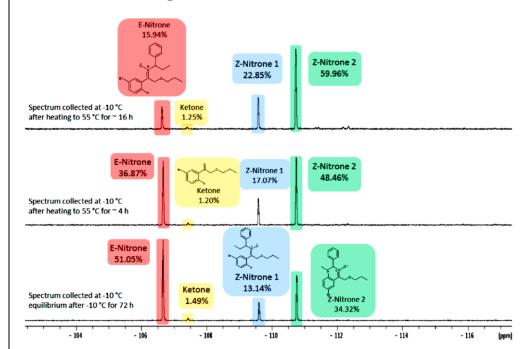
Diastereoselectivity optimization

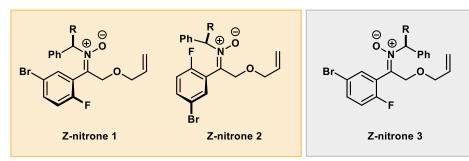
- No evidence of titanium assistance in the cycloaddition
- Primary role of Ti(Oi-Pr)4 is efficient condensation with hydroxylamine. Other alkoxides (Zr, Hf, Sc, Si) proved inefficient
- Increased steric bulk around the stereogenic center results in increased dr...

Hydrogenolysis optimization

$$\begin{bmatrix} H \\ O \\ F \end{bmatrix} = \begin{bmatrix} H_2, Pd/C \text{ or } Pd(OH)_2 \\ Ph \\ Br \end{bmatrix}$$

$$\begin{bmatrix} H_2, Pd/C \text{ or } Pd(OH)_2 \\ R = Me \quad 24 : 1 \\ R = Et \quad 5 : 1 \\ R = i-Pr \quad 1 : 72 \end{bmatrix}$$


$$\begin{bmatrix} H \\ OH \\ OH \\ OH \\ OH \\ Br \end{bmatrix}$$


$$\begin{bmatrix} H \\ OH \\ OH \\ OH \\ OH \\ Cleavage of 1 \end{bmatrix}$$

$$\begin{bmatrix} Cleavage \text{ of } 2 \\ Cleavage \text{ of } 2 \\ Cleavage \text{ of } 2 \end{bmatrix}$$

... but drastically decreases selectivity for the hydrogenolysis

Mechanistic investigation [2]

Competent in the cycloaddition

Geometrically restricted, possible, but no evidence of reactivity

POTW: Asymmetric Nitrone-Olefin Cycloaddition

Synthesis of the hydroxylamine

 First generation: potentially hazardous (HCN 4.5 g / kg product was released), expensive bromoacetonitrile

$$\begin{array}{c|c} & & & \\ \hline Ph & & & \\ \hline NH_2 & & & \\ \hline & & \\ \hline$$

Avg. yield 80%, 1.6 kmol scale, total of 1227 kg / 3 batches

• Second generation: improved safety, cost efficiency, lower solvent consumption

$$\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

Avg. yield 84%, 2.1 kmol scale, 2296 kg / 4 batches

Optimal conditions

Optimized 2nd generation route